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Three-dimensional effects in directional solidification in Hele-Shaw cells: Nonlinear evolution
and pattern selection

V. S. Ajaev and S. H. Davis
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208

~Received 18 June 1999!

Directional solidification of a dilute binary alloy in a Hele-Shaw cell is modeled by a long-wave nonlinear
evolution equation with zero flux and contact-angle conditions at the walls. The basic steady-state solution and
its linear stability criteria are found analytically, and the nonlinear system is solved numerically. Concave-
down ~toward the solid! interfaces under physically realistic conditions are found to be more unstable than the
planar front. Weakly nonlinear analysis indicates that subcritical bifurcation is promoted, the domain of
modulational instability is expanded and transition to three-dimensional patterns is delayed due to the contact-
angle condition. In the strongly nonlinear regime fully three-dimensional steady-state solutions are found
whose characteristic amplitude is larger than that for the two-dimensional problem. In the subcritical regime
secondary bifurcation to stable solutions is promoted.

PACS number~s!: 05.45.2a, 45.70.Qj, 47.20.Hw, 81.10.2h
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I. INTRODUCTION

Directional solidification of binary alloys leads to a var
ety of interesting nonlinear phenomena, which have b
studied analytically, numerically, and experimentally~see@1#
for a review!. Most theoretical models for nonlinear evolu
tion in directionally solidified systems are two-dimension
experiments, however, are usually carried out in Hele-Sh
cells, where three-dimensional effects can be important@2#.
In particular, in steady state the interface can be curv
rather than planar, due to heat loses at the walls@3# or the
boundary conditions at the line of contact between the so
liquid interface and the wall. The influence of contact-li
conditions has been studied for both symmetric@4# and one-
sided@5# models.

Corrections to the classical linear stability criteria due
contact-angle effects were found analytically and verified
merically in @5#. Two different cases were considered in th
study. First, the thickness was assumed to be small eno
so that no instability wavelength can fit into the gap betwe
the plates. Correction to the stability criterion is found to
small under physically realistic conditions. The second c
discussed involves values of thickness near the one-ha
the Mullins-Sekerka wavelength. It is referred to as ‘‘res
nant’’ since the behavior of the system here is determined
the interactions between the growing disturbance and
leading Fourier mode of the basic-state solution. Stabi
criteria can differ significantly from those for the planar i
terface.

The approach taken in@5# does not allow one to describ
nonlinear evolution of the front for arbitrary values of ga
width or far away from the initial bifurcation point. In orde
to obtain such description and study pattern formation so
simplified model equations are needed. A natural simplifi
tion of the problem is achieved by using long-wave evolut
equations. In this approach the full system of equations
boundary conditions for directional solidification is reduc
to a single partial differential equation. This has been carr
out for small values of segregation coefficient in consti
tional supercooling regime@6# and for the large surface en
ergy @7#. For arbitrary values of segregation coefficient
PRE 611063-651X/2000/61~2!/1275~10!/$15.00
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long-wave evolution equation has been obtained near the
solute stability limit@8#. All these equations were derived fo
the infinite domain, which is usually modeled numerically
periodic boundary conditions. In the present study sim
ideas will be used for solidification in Hele-Shaw cells wi
contact-angle and no-flux conditions at the walls. The res
ing system is solved numerically to show how even in He
Shaw cells three-dimensional evolution emerges.

II. FORMULATION

Consider directional solidification at constant speedV of
a dilute binary alloy in a Hele-Shaw cell as shown in Fig.
The solute diffusivity in the liquid phaseDL is usually much
larger than that in the solid phase, and so diffusion in
solid is neglected. The ‘‘frozen temperature approximatio
is used@1#, which implies equal thermal conductivities i
solid and liquid, negligible latent heat release in the inter
cial heat balance, and large thermal diffusion length. W
these assumptions the value of thermal gradientGT is the
same in both phases; the temperature profile is hence lin

Scale the independent variables as follows: length by
concentration-boundary-layer thicknessdc5DL /V and time
by dc /V. The nondimensional governing equation a
boundary conditions at the solid-liquid interface are the f
lowing:

Ct2Cz5¹2C, z.h~x,y,t !, ~1!

@C~k21!11#~11ht!5n•¹C, z5h~x,y,t !, ~2!

M 21h5C1GK~h!, z5h~x,y,t !. ~3!

Here the reference frame moves with speedV so thatx
and y are along the interface, parallel to and normal to t
walls, respectively, andz is oriented along the pulling direc
tion, as shown in Fig. 1,n5(2hx ,2hy,1) is a normal vector
to the interfacez5h(x,y,t) pointing into the liquid. The
morphological numberM and the surface-tension paramet
G are defined as follows:
1275 ©2000 The American Physical Society
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M5
mc̀ ~k21!

GTkdc
, G5

gTMk

Lvmdcc`~k21!
.

Herec` is the solute concentration far from the interfaceg
is the surface tension,Lv is the latent heat per unit volume
TM is the melting temperature of the pure material, andk is
the segregation coefficient. The equilibrium melting te
perature of a dilute binary alloyT is given by

T5TM1mC* , ~4!

wherem is the slope of the liquidus line in the phase d
gram,C* is the dimensional concentration. The scaled c
centration in~1!–~3! is related to the dimensional one by th
formula

C5
C* 2c` /k

c`~k21!/k
,

and the scaled curvature for a given interface shapeh(x,y,t)
is

K~h!5
~11hx

2!hyy22hxhyhxy1~11hy
2!hxx

~11hx
21hy

2!3/2
.

Boundary condition~2! represents the conservation of so
ute at the interface, Eq.~3! comes from the conditions o
constitutional undercooling@Eq. ~4!# and the Gibbs-Thomson
effect@1#. To complete the formulation the far-field and sid
wall boundary conditions are specified as follows:

C→1, z→`, ~5!

FIG. 1. Experimental configuration and coordinate system
directional solidification in a Hele-Shaw cell. The anglef between
the solid-liquid interface and the wall is different fromp/2, so the
steady-state solution is a curved front.
-

-

Cy50 y56d, ~6!

hy56cotf y57d. ~7!

Here 2d is the thickness of the Hele-Shaw cell in units
dc .

In deriving a long-wave evolution equation Riley an
Davis @7# are followed and one considers the limit of sma
segregation coefficient and large surface energy. Let us
fine

«[G21/2

and rescale the system as follows:

«~x,y!5~X,Y!, «2t5T,

«22k5k, h~x,y,t !5H~X,Y,T!.

It is important to note that the assumption about the len
scale in they direction relies on the fact that the interfac
shape is a slowly varying function ofy as suggested by a
previous analytical study@5#; this has to be checkeda pos-
teriori.

We follow Riley and Davis and write the leading-ord
concentration profile in the form

C512A~X,Y,T!eH2z,

where

A~X,Y,T!512M 21H1¹2H.

This has to satisfy the no-flux boundary condition at the s
walls ~6!. The straightforward differentiation of the equatio
for C leads to the following boundary condition:

~¹2H !Y5~M 21211M 21H2¹2H !HY , Y56D.
~8!

Here the rescaled half-thickness of the Hele-Shaw cel
defined asD5«d. The second boundary condition follow
immediately from~7! and can be written in the form

«HY56cotf, Y57D. ~9!

The long-wave equation is then derived by exactly t
same procedure as for infinite domain@7#; the result is

HT2M¹2HT1M¹4H1d¹2H1kH

5¹•~H¹H !2M¹•~¹2H¹H !, ~10!

whered5M212kM . Thus, the equation obtained here
identical to that of Riley and Davis@7#; the boundary condi-
tions, however, are different. This system could now
solved numerically, but first use is made of analytical me
ods.
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III. ANALYTICAL RESULTS

A. Basic state and linear stability

Let us assume that the contact anglef is close top/2,

f5
p

2
2p«, «!p!1,

and use a perturbation expansion in powers ofp to determine
the x-independent basic-state interface,

HB5pH11p2H21¯.

The basic-state interface shape is the function ofy only
and can be expressed in terms of the Fourier series as

HB5 (
n50

`

HB
~n! cosanY, an5

pn

D
,

where the Fourier coefficients can also be expanded in p
ers ofp:

HB
~n!5pH1

~n!1p2H2
~n!1¯.

The coefficients of the series expansion of the leading-o
solution,H1

(n) , are found from the two-dimensional versio
of the long-wave evolution equation, which can be written
Fourier space as

M ~H1YYYY!n1d~H1YY!n1kH1
~n!50, n51,2, . . . .

~11!

Here only the leading-order terms in powers ofp are consid-
ered. Integration by parts can be used to obtain the follow
expression for the Fourier component of the second der
tive:

~H1YY!n[
1

D E
2D

D

H1YYcosanY dY

52D21~21!n112an
2H1

~n! , ~12!

where the contact-angle condition~9! has been used. A simi
lar expression can be obtained for the Fourier componen
the fourth derivative by using the linearized version of t
boundary condition~8! combined with Eq.~9!,

~H1YYYY!n52D21~21!n11~M 21212an
2!1an

4H1
~n! .

~13!

After substituting the expressions~12! and~13! into Eq.~11!
the following formula is obtained for the leading-order Fo
rier components of the basic state:

H1
~0!52

M

D
,

H1
~n!52MD21~21!n

k1an
2

dan
22Man

42k
, n51,2, . . . . ~14!
-
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A similar approach can be used to calculate the high
order terms. Let us now consider its stability by studying t
time evolution of a small disturbance of the form

H85 «̃u~X,Y,T!, «̃!p!1,

where«̃ is the disturbance amplitude, independent of para
eter«. At neutral stability (uT50) the functionu satisfies the
following system:

M¹4u1d¹2u1ku5¹•~HB¹u1u¹HB!

2M¹•~¹2u¹HB1¹2HB¹u!,

~15!

uY50, Y56D, ~16!

~¹2u!Y5~M 21u2¹2u!~6p!, Y57D, ~17!

where now¹5(]X ,]Y). Note that for planar front (p50)
the eigenfunctions are simply sines and cosines, and
characteristic equation at the neutral stability condition
duces to

M uau42duau21k50.

Herea is the wave vector of the disturbance@7#. The critical
values ofuau2 and the scaled segregation coefficient are giv
by

kc5~M1/221!2/M , ac
25~M1/221!/M . ~18!

If the thickness 2D is smaller than1
2l5p/ac , one-half of

the critical wavelengthl, then the critical disturbance is in
dependent ofY; for larger values of the thickness thre
dimensional structures can develop from the planar interfa
Both cases are relevant experimentally.

For small values of the contact-angle parameterp the
shape of the interfacial disturbance can be written as
following asymptotic expansion:

u5u01pu11p2u21¯, ~19!

where the leading-order termu0 is the eigenfunction of the
stability problem for planar interface. Let us first assume t
the thickness is smaller than the resonant valuep/ac such
that both D and 4D2l are O(1) quantities. Then the
leading-order disturbance can be written in the form

u05u0
~0!eiaX1c.c.

and the above asymptotic expansion foru in powers of the
contact-angle parameter is uniformly valid. Here ‘‘c.c.’’ d
notes complex conjugate. The stability for near-resonant
ues of thickness will be discussed later in this subsection

Let us write the Fourier expansion for the first-order s
lution in the form

u15eiaX(
n50

`

u1
~n! cos~anY!, an5

pn

D
,

substitute this expansion into the system~15!–~17!, and col-
lect all terms atO( «̃p); this gives expressions for the Fou
rier coefficients at this order in the form:
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u1
~n!5u0

~0!
2Ma2D21~21!n112~a21an

212Ma2an
2!H1

~n!

M ~a412a2an
21an

4!2d~a21an
2!1k

,

u1
~0!50.

The perturbation problem has a unique solution o
when the scaled segregation coefficientk is equal tokc ; thus
no correction to the stability boundary is found at this ord
The asymptotic expansion ofk therefore takes the form:

k5kc1p2k21¯ .
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There is no first-order correction to the wave number as w
At the second order inp it is sufficient to integrate the equa
tion for u2 to see that a solvability condition must be sat
fied in order for solution to exist. This leads to an express
for k2 in the form

k25
e2 iaX

2Du0
~0!~11Ma2!

E
2D

D

u1XX~H12MH1YY!dY.

This can be expressed in terms of the known Fourier coe
cients
k25 (
n51

` a2@2Ma2D21~21!n112~a21an
212Ma2an

2!H1
~n!#@2MD21~21!n112~11Man

2!H1
~n!#

2@M ~a412~aan!21an
4!2d~a21an

2!1kc#~11Ma2!
.
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The correction to the critical value ofk is plotted as a func-
tion of the morphological number in Fig. 2, together wi
corresponding results for the infinite domain@7#. Clearly the
effect is destabilizing for all values of the morphologic
number. This is consistent with the experimental obser
tions @2# and other solidification models@4,5#.

Let us now turn to the resonant case. First assume
thickness 2D is exactly equal top/ac and study the stability
of the interface with respect to the antisymmetric dist
bances. Those giveO(p) corrections to the stability crite
rion, while symmetric ones only contribute at the seco
order, as discussed above. A Fourier expansion for an a
trary odd function ofY can be written as

u5 (
n51

`

v ~n! sin~anY!, an5pn/2D. ~20!

The functionu still satisfies the same general stability pro
lem ~15!–~17!. In the calculation below the subscript ‘‘c’’ is

FIG. 2. Neutral stability curve for a nonplanar solidificatio
front obtained from the leading-order perturbation theory~dashed
line! for p50.3. The value of thickness isD5l/8. Solid lines rep-
resent stability boundaries for the same equation on the infi
domain.
-
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dropped; the wave number is fixed and is equal to the crit
value appropriate to the boundary condition.

Both the numerical solution and the structure of analyti
expressions below suggest that the Fourier coefficients
idly decay asn is increased, so it is usually sufficient t
consider a two-mode truncation of the series.

The solvability condition is now obtained in the form

k2kc5
a2

v ~1!AM
@M ~HBYuY!12~HBu!1#. ~21!

The leading-order terms here are first order inp; if all higher-
order contributions are neglected, the values of the correc
can be written in the form

k2kc52
a2p

AM
@Ma2H1

~1!1H1
~0!2 1

2 H1
~1!#.

Let us now substitute herein the expression for the Fou
coefficients of the basic state and simplify the resulting f
mula by using the characteristic equation for stability of t
planar interface. The result is

k2kc5
2p

9DAM
~21Ma22M2a4!. ~22!

This correction is plotted in Fig. 3 as a function of th
control parameterM for p50.2, where a relatively large
value ofp is considered for the purpose of clarity. The effe
is more significant since it is linear inp. Note that positive
values of p correspond to the more physically commo
concave-down interface. If the interface is concave down,
perturbation theory predicts that the effect is destabiliz
over a wide range ofM. The stabilizing influence for largeM
may only be suggestive since in the derivation of the eq
tion, M is order one. We note that the conclusion about
destabilizing effect is consistent with a previous result fo
different model of solidification@5#. In experiments for near-
resonant conditions the effect is also found to be destab
ing for concave-down interfaces@2#.
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It is important to note that a significant correction to t
stability criterion is obtained not only at one special value
thickness, but in a neighborhood of such values. This can
understood from the physical mechanism, which impl
resonant-type interaction between the symmetric Fou
mode of steady state and the leading mode of instabi
clearly they occur not only for the critical wavelength. Mor
over, higher-order resonances can occur for larger value
thickness, when several leading-order wavelengths can
into the gap. It is clear that such effects can significan
influence pattern formation in the system. This is discus
in the next subsection. For computational simplicity it is a
sumed that the condition of exact resonance holds; results
qualitatively the same for the near-resonant condition. A
note that patterns for a small nonresonant value of thickn
are not discussed in this section; this case, as well as m
numerical results for the resonant case, are describe
Sec. IV.

B. Weakly nonlinear analysis

Let us reintroduce the small parameter«̃ which measures
the amplitude of small perturbations and write t
asymptotic expansion in the form

H5(
i 50

`

(
j 50

`

Hi j p
i «̃ j .

Near the neutral stability curve~for values of the scaled seg
regation coefficient given byk( «̃)5k2m«̃2) the nonlinear
evolution of the disturbances occurs on a slow time scalT
5 «̃2t @7#. Then, the first-order solution can be written in t
form

H015AeiaX1BeiaY1c.c. ~23!

Here c.c. denotes complex conjugate. Let us introduce
linear operator

L[M¹41d¹21k.

FIG. 3. Neutral stability curves forp50.2, resonant case
~dashed line!. The value of thickness isD5l/4. Solid lines repre-
sent stability boundaries for the equation on the infinite domain
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At the second order in«̃ one obtains the following problem
@here it is assumed thatO( «̃2) is not coupled to any terms
that depend onp#:

LH025
1

2
¹2H01

2 2M¹•~¹2H01¹H01!. ~24!

Further calculation can be simplified if one uses the follo
ing easily verified identity:

¹2H0152a2H01.

In particular, it allows us to simplify the right-hand side o
Eq. ~24! so that theO( «̃2) problem becomes

LH025
11a2M

2
¹2H01

2 .

No solvability condition arises at this order; the solution
found by applying the inverse operatorL21 to the right-hand
side of the last equation and substituting the expression~23!
for H01 in terms of the amplitudesA andB into its right-hand
side, which yields

H0252j~ 1
9 A2e2iaX1 1

9 B2e2iaY2ABeiaX1 iaY

2AB* eiaX2 iaY1c.c.!,

wherej52M 21(a2M11)/a2. At the order of«̃3 one ob-
tains the following problem:

LH035mH011¹2~H01H02!2M¹•~U01¹H021U02¹H01!.

~25!

Here and in all subsequent calculations the functionsUi j are
defined for all integer values ofi and j according toUi j
5¹2Hi j .

There are secular terms of the typeeiaX and eiaY on the
right-hand side of Eq.~25!; the solvability condition requires
that

AT5mA2a0uAu2A2b0uBu2A,

BT5mB2a0uBu2B2b0uAu2B,

where the constantsa0 and b0 are given by the following
expressions:

a05
2~2AM23!

9M
, b05

4~AM22!

M
. ~26!

The region of subcritical bifurcation corresponds to negat
values of a0 , and the transition point (a050) is at M
59/4. There are two types of steady-state solutions: tw
dimensional cells~either A50 or B50) and square-type
pattern, for which the two amplitudes are equal (A5B).
Two-dimensional cells are stable if

12
b0

a0
,0.

Nonsecular terms on the right-hand side of Eq.~25! also
contribute to theO( «̃3) solution, which can be written in the
form
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H035HB3e3iaY1H1AeiaX~B2e2iaY1B* 2e22iaY!1c.c.

1¯, ~27!

H5
2ja2~112Ma2!

81Ma429da21kc
, H15

ja2~40255Ma2!

9~25Ma425da21kc!
.

~28!

Here we give explicit expressions only for those terms wh
contribute to the contact-angle corrections calculated bel

Let us now discuss changes in the bifurcation struct
due to the contact-angle effects~nonzero values ofp!. The
O( «̃p) problem is formulated as follows:

LH115¹2~H01H10!2M¹•~U01¹H101U10¹H01!.

The solvability condition at this order gives corrections
the stability criterion, as discussed in Sec. III B. There
also nonsecular terms on the right-hand side; correspon
terms in the solution are found by using the inverse of
linear operatorL and known expressions forH10 and H01.
The result can be written as follows:

H115ĤBe3iaY1Ĥ1e2iaY~AeiaX1A* e2 iaX!1c.c.,

Ĥ152
a2HB

~1!~516Ma2!

2~25Ma415da21k!
, Ĥ5

9~HB
~1!22HB

~2!Ma2!

81Ma419da21k
.

At the second order in«̃ the contact-angle corrections a
found from the following system:

LH125¹2~H01H111H10H02!

2M¹•~U01¹H111U11¹H01

1U10¹H021U02¹H10!.

Solvability condition at this order is satisfied automatica
@9#; solution terms required at the next order are given b

H125K1e2iaY1~AB* eiaX1A* B* e2 iaX!KeiaY1c.c.,
~29!

where

K152
1

9a2M FjHB
~2!B* 2S 2

9
1

16Ma2

3 D18uAu2Ĥ1AM G ,
K5

jHB
~1!~2AM21!2Ĥ1~AM11!

a2M
.

At the O(p«̃3) the right-hand side contains secular term
of the form

2a2~R12Ma2R2!eiaX2a2~S12Ma2S2!eiaY1c.c.,

where

R15S jĤ1

9
1H1HB

~1!1K D @~B* !21B2#A,
h
.

e

e
ng
e

S15j~ 1
9 ĤuBu2B* 22uAu2B* Ĥ1!1 1

2 H~HB
~1!B3

1HB
~2!B* 3!12uAu2B* K1B* K1 ,

R25S 4j

9
Ĥ112H1HB

~1!1K D ~B* 21B2!A,

S25j~2Ĥ1uAu2B* 1 10
3 ĤB* 2B!1H~6HB

~1!B3224HB
~2!B* 3

29HB
~1!B* 3118HB

~2!B3!22K1B* 12uAu2B* K.

In order to eliminate these secular terms a solvability con
tion has to be satisfied, which is written in the form

AT5mA2a0uAu2A2b0uBu2A2
a2p

AM
~R12Ma2R2!,

BT5mB2a0uBu2B2b0uAu2B2
a2p

AM
~S12Ma2S2!.

These conditions can also be interpreted in terms of c
rections to the coefficientsa0 and b0 @9#. This approach
yields a modified system of amplitude equations in the for

AT5mA2a0uAu2A2bB2A,

BT5mB2aB32b0uAu2B,

where

a5a01pa11¯, b5b01pb11¯ .

The no-flux boundary condition requires the amplitudeB to
be purely imaginary. For planar front steady-state cellu
structures can be observed near the bifurcation point in
region of parameters where the initial bifurcation is sup
critical. Both the amplitude of such cells and the location
the transition point between the regions of supercritical a
subcritical bifurcations will change due to the contact ang
For positive p the region of subcritical bifurcation is ex
panded, as shown in Fig. 4. The changes in the bifurca
structure are illustrated in Fig. 5—they are similar to tho
found in @5#. Stable two-dimensional structures withB50
correspond to interfaces which are symmetric with respec
the center plane.

For the values of control parameterk( «̃)5k2m«̃2 the
interface may be unstable with respect to modulation
disturbances of the larger scaleX̂5 «̃2X. In an infinite three-
dimensional system there is an annular ring of the unsta
wave numbers for this modulational instability@13#, the
thickness of the ring isO( «̃2), see Fig. 6. For the Hele-Shaw
cell the system is essentially two dimensional for sm
enough values of thickness when no wave numbers wit
nonzeroy-component are allowed. If the thickness is no
increased to the point when there is only one admiss
value of this component~dashed line in Fig. 6!, then the
weakly nonlinear analysis will lead to the following syste
of amplitude equations:

AT5mA2a0uAu2A2bB2A1g
]2A

]X̂2
,
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BT5mB2aB32b0uAu2B.

Notice that modulational terms are present only forA. In
order to find the value of the coefficientg we expand the
linear operator in powers of«̃:

L5L01 «̃L11¯,

and then substitute this into all terms of the equation, incl
ing nonlinear ones. At the second order in«̃ there is no
additional contribution due to the contact angle, but solva
ity condition at the third order gives corrections to the va
of g @9#.

Since the value ofg now depends on the contact ang
the modulational stability boundary is different. The resu
are shown in Fig. 7; the domain of modulational instability
expanded.

FIG. 4. Location of the transition point on the neutral stabil
curve for the resonant case. Solid and dotted lines denote th
gions of supercritical and subcritical bifurcations, respectively,
the two-dimensional case (p50). For p50.1 the supercritical bi-
furcation corresponds to the dashed line, the subcritical bifurca
to the dash-dotted line.

FIG. 5. Bifurcation diagram for nonzero values ofp for the
resonant case. Absolute values of the amplitudes in both direct
are plotted versus the control parameter. Dotted lines denote
stable branches. The primary bifurcation is centerline symme
the secondary is centerline antisymmetric, and the secondary b
cation point approaches the primary asp→0.
-

l-

,
s

IV. NUMERICAL SOLUTION

In order to check the analytical results and study stron
nonlinear evolution of the solidification front the long-wav
evolution equation~10! is solved numerically with the
boundary conditions~8! and ~9! and periodic boundary con
ditions in theX direction. Spatial discretization is performe
using finite differences on a uniform mesh in theY direction
and Fourier components in theX direction. The grid points at
the boundariesY52D andY5D require special treatment
For a fixed value ofX the functionH(X,Y) at the two grid
points adjacent to each of the walls can be expressed
Taylor series about the end points. The first and third deri
tives are eliminated from such expressions by using
boundary conditions~8! and~9!. Then each Taylor expansio
is truncated to the fourth order, which leads to a linear s
tem of two equations for the unknown second and fou
derivatives at each end. After this system is solved, all
rivatives in the fourth-order Taylor expansions about the e
points are known: we use these expansions to extrapolate

re-
r

n

ns
n-
c,
r-

FIG. 6. Unstable wave numbers for modulations in three dim
sions~inside the annular ring!. Only two values of they component
are allowed for the Hele-Shaw case.

FIG. 7. Corrections to the modulational stability boundary. T
solid line represents the linear stability curve, the dashed line
resents the Eckhaus curve, and the dash-dotted line is the mo
tional stability boundary forp50.03.
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function outside its physical domain of definition. Now a
spatial derivatives can be evaluated by standard cen
difference formulas. Time-stepping is performed by Gea
method ~backward differentiation formulas! using standard
subroutines from theIMSL software package.

At sufficiently small values of thickness and length in t
X direction, for which the curved-front solution should b
stable according to the analytical formulas from the prec
ing section, the numerical solution quickly approach
steady state. This one-dimensional numerical interface sh
was compared to the perturbation solution given by Eq.~14!.
The numerical steady-state solutions are shown in Fig. 8
gether with the perturbation theory results~dashed lines!.
Clearly they are in a very good agreement even for relativ
large values ofp: interface shapes are almost identical f
p,0.1 and only small error can be seen for larger values
the parameter@such asp50.5, Fig. 8~b!#.

Let us now increase the value of thickness to the po
where asymmetric disturbances can grow. Consider the ra
of parameters where bifurcation in the unperturbed syste
supercritical. For relatively small values ofp the front
quickly approaches the symmetric state, then after some
the instability develops which leads to asymmetric stea
state structure similar to finite-amplitude solution of the u

FIG. 8. Steady-state interface shapes obtained numerically
M54.0,k50.25,D50.2l ~solid lines!. Dashed lines represent pe
turbation theory results. The values of the contact-angle param
arep50.2 ~a! andp50.5 ~b!.
l-
s

-
s
pe

o-

ly

f

t
ge
is

e
-

-

perturbed problem. The stability boundary can be found
merically and then compared to linear theory. For sm
values ofp,0.01 the leading-order perturbation theory r
sult ~22! is in very good agreement with the numerics; f
larger values ofp it becomes inaccurate despite the fact th
basic state is still well represented by the perturbation
proximation. The error in linear stability is due to inaccura
representation of the eigenfunctionu. If one uses a two-mode
truncation in the Fourier expansion ofu, the agreement be
comes much better. This can be seen in Fig. 9: the solid
represents formula~21!, the dashed line leading-order corre
tion ~22!; circles correspond to the numerical result.

In order to verify the validity of the long-wave approac
the derivative with respect toy was calculated for all numeri
cal solutions; it is consistent with the scaling we used, i.e.,
solutions are slowly varying functions ofy @9#. It is also
important to note that the angle between the interface and
wall in the cross sectionu is different from the actual contac
angle. A simple geometric construction allows one to fi
the relation between those in the form

tanu5tanf/A11HX
2.

Let us now discuss the fully three-dimensional evolutio
First, consider a small value of thickness (D5l/8), when
steady-state structures in the weakly nonlinear regime
almost two dimensional for smallp. In the strongly nonlinear
regime two-dimensional cellular structures with deep ro
are known to appear in the numerical solutions@10,11#; these
simulations are often used to model similar structures in
periments. Experimental results, however, depend on th
ness@12#, while previous numerical simulations did not tak
into account three-dimensional effects. It was found from o
numerical solution that stable three-dimensional structu
exist for a range of values of contact angles and depend
thickness, typical results are shown in Fig. 10~a!. The solu-
tions are flattened at the top and thus similar to experim
tally observed shallow cells. The interface shapes depen
the contact angle, as is illustrated in Fig. 10~b!, where cross

or

ter

FIG. 9. Linear stability criterion for symmetric interface shap
at M54. Correction to the scaled segregation coefficient,Dk5k
2kc , is plotted as a function ofp for D;0.5l. The solid line
represents the two-mode Galerkin approximation, the dashed
represents the first-order perturbation solution, and the circles
resent the numerical results.
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sections of the interface shapes are shown for the valuep
50 and 0.01. Characteristic amplitude of the solution
larger due to the presence of three-dimensional effects. T
we expect that contact-line effects for concave-down in
faces promote formation of the rootlike structures. Sin
deep cells typically have smaller spacing, a decrease in s
ing can be expected due to three-dimensional effects;
may expain the fact that experimentally observed spacin
cellular structures at low speeds is typically smaller th
predicited by two-dimensional models@12#. Careful mea-
surement of the amplitudes of cells is needed to verify t
hypothesis. In the region of subcritical bifurcation it w
found that the secondary bifurcation to stable solutions
be promoted due to contact-angle effects.

Larger values of thicknesses were also considered, w
resonant effects are more important. In the weakly nonlin
regime the main results about competition between two-
three-dimensional patterns were verified numerically. Ty
cal structures in this regime are shown in Fig. 11; they te
to be more unstable than one would expect from the per
bation theory.

FIG. 10. Results of numerical simulations for a small value
nondimensional thicknessD5l/8. ~a! Three-dimensional steady
state interface shapes in the strongly nonlinear regime fork2kc

50.03. ~b! Cross sections of the front for different values of t
contact angle. The solid line corresponds to the two-dimensio
problem, the dashed line to the steady-state solution withp50.01.
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V. CONCLUSIONS

Three-dimensional effects are considered in direction
solidification in Hele-Shaw cells in the limit when the gap
width is much larger than the solute diffusion length. The
system is described by a long-wave evolution equation su
ject to appropriate boundary conditions. When the conta
angle satisfiesuf2p/2u}p!1, asymptotic expansions are
used to describe the behavior of the interface. At arbitrar
values of contact angles the system is solved numerically b
a finite difference method.

It is found that for sufficiently small values of the gap
thickness the interface always remains symmetric with re
spect to the center line; for small values ofp the asymptotic
theory indicates that such a curved front is less stable th
planar basic-state solution, the corrections are second ord
in p and therefore usually small. In the strongly nonlinea
regime numerical solutions indicate the appearance
steady-state cellular structures that satisfy the boundary co
ditions at the walls. Formation of rootlike structures is pro
moted for concave-down interfaces asp is increased.

As the value of the thickness is increased to approach t
one-half of the wavelength of instability, resonant-type non
linear interactions between the most unstable disturbance a
the symmetric basic-state solution determine the behavior
the interface. They lead to destabilization of the concave
down interface; this effect is linear inp. Weakly nonlinear
analysis shows that appearance of three-dimensional stru
tures can be delayed; this is also confirmed by numerics. T
region of instability due to modulations expands due to th
presence of contact-angle effects. Numerical results sugg
that for largep interfaces symmetric inY tend to be more
stable than predicted by perturbation theory. In the strong
nonlinear regime fully three-dimensional steady-state solu
tions are found; the secondary bifurcation to stable solution
is postponed.
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FIG. 11. Interface shapes in the weakly nonlinear regime for
larger value of thickness,D5l/4. The interface is no longer sym-
metric with respect to the center plane.
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