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Three-dimensional effects in directional solidification in Hele-Shaw cells: Nonlinear evolution
and pattern selection
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Directional solidification of a dilute binary alloy in a Hele-Shaw cell is modeled by a long-wave nonlinear
evolution equation with zero flux and contact-angle conditions at the walls. The basic steady-state solution and
its linear stability criteria are found analytically, and the nonlinear system is solved numerically. Concave-
down (toward the soliflinterfaces under physically realistic conditions are found to be more unstable than the
planar front. Weakly nonlinear analysis indicates that subcritical bifurcation is promoted, the domain of
modulational instability is expanded and transition to three-dimensional patterns is delayed due to the contact-
angle condition. In the strongly nonlinear regime fully three-dimensional steady-state solutions are found
whose characteristic amplitude is larger than that for the two-dimensional problem. In the subcritical regime
secondary bifurcation to stable solutions is promoted.

PACS numbgs): 05.45-a, 45.70.Qj, 47.20.Hw, 81.16h

[. INTRODUCTION long-wave evolution equation has been obtained near the ab-
solute stability limit[8]. All these equations were derived for
Directional solidification of binary alloys leads to a vari- the infinite domain, which is usually modeled numerically by
ety of interesting nonlinear phenomena, which have beeperiodic boundary conditions. In the present study similar
studied analytically, numerically, and experimentd#ige[1] ideas will be used for solidification in Hele-Shaw cells with
for a review. Most theoretical models for nonlinear evolu- contact-angle and no-flux conditions at the walls. The result-
tion in directionally solidified systems are two-dimensional;ing system is solved numerically to show how even in Hele-
experiments, however, are usually carried out in Hele-Shavshaw cells three-dimensional evolution emerges.
cells, where three-dimensional effects can be imporaht
In particular, in steady state the interface can be curved, Il. EORMULATION
rather than planar, due to heat loses at the w&l|sor the
boundary conditions at the line of contact between the solid- Consider directional solidification at constant sp&edf
liguid interface and the wall. The influence of contact-linea dilute binary alloy in a Hele-Shaw cell as shown in Fig. 1.
conditions has been studied for both symmeditand one- The solute diffusivity in the liquid phase, is usually much
sided[5] models. larger than that in the solid phase, and so diffusion in the
Corrections to the classical linear stability criteria due tosolid is neglected. The “frozen temperature approximation”
contact-angle effects were found analytically and verified nuis used[1], which implies equal thermal conductivities in
merically in[5]. Two different cases were considered in thissolid and liquid, negligible latent heat release in the interfa-
study. First, the thickness was assumed to be small enougtial heat balance, and large thermal diffusion length. With
so that no instability wavelength can fit into the gap betweerthese assumptions the value of thermal grad@ntis the
the plates. Correction to the stability criterion is found to besame in both phases; the temperature profile is hence linear.
small under physically realistic conditions. The second case Scale the independent variables as follows: length by the
discussed involves values of thickness near the one-half afoncentration-boundary-layer thickne§s=D, /V and time
the Mullins-Sekerka wavelength. It is referred to as “reso-by §./V. The nondimensional governing equation and
nant” since the behavior of the system here is determined byoundary conditions at the solid-liquid interface are the fol-
the interactions between the growing disturbance and thiwing:
leading Fourier mode of the basic-state solution. Stability

criteria can differ significantly from those for the planar in- C,—C,=V2C, z>h(x,y,t), (1)
terface.
The approach taken ir5] does not allow one to describe [C(k—1)+1](1+h)=n-VC, z=h(xy.t) )
t)— 1 ’ - 1Yl

nonlinear evolution of the front for arbitrary values of gap
width or far away from the initial bifurcation point. In order .
to obtain such description and study pattern formation some M~*h=C+I'K(h), z=h(x,y,t). )
simplified model equations are needed. A natural simplifica-

tion of the problem is achieved by using long-wave evolution Here the reference frame moves with spéédo thatx
equations. In this approach the full system of equations andndy are along the interface, parallel to and normal to the
boundary conditions for directional solidification is reducedwalls, respectively, andis oriented along the pulling direc-
to a single partial differential equation. This has been carriedion, as shown in Fig. In=(—h,,—hy,1) is a normal vector
out for small values of segregation coefficient in constitu-to the interfacez=h(x,y,t) pointing into the liquid. The
tional supercooling regimgs] and for the large surface en- morphological numbeM and the surface-tension parameter
ergy [7]. For arbitrary values of segregation coefficient al’ are defined as follows:
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2d Cy=0 y==d, (6)
hy=*cot¢ y==d. @
liquid Here A is the thickness of the Hele-Shaw cell in units of

S -

In deriving a long-wave evolution equation Riley and
Davis[7] are followed and one considers the limit of small
segregation coefficient and large surface energy. Let us de-
fine

EEF_]'/Z
and rescale the system as follows:

e(x,y)=(X,Y), &%=T,

e %k=k, h(x,y,t)=H(X,Y,T).

It is important to note that the assumption about the length

scale in they direction relies on the fact that the interface

shape is a slowly varying function of as suggested by a

previous analytical stud{5]; this has to be checkeal pos-
FIG. 1. Experimental configuration and coordinate system forteriori.

directional solidification in a Hele-Shaw cell. The angidetween We follow Riley and Davis and write the leading-order

the solid-liquid interface and the wall is different fromi2, so the  concentration profile in the form

steady-state solution is a curved front.

solid
(crystal)

C=1-A(X,Y,T)e" 2
_ mc.(k—1) yTwk

Grkd, ' LymdcC.(k—1) where

Herec,, is the solute concentration far from the interfage,

is the surface tensiomn,, is the latent heat per unit volume,

Tw is the melting temperature of the pure material, &nsl . ) N .

perature of a dilute binary allo¥ is given by walls (6). The straightforward differentiation of the equation
for C leads to the following boundary condition:

AX,Y,T)=1-M H+V?H.

T=Ty+mC*, (4)
i iqui ine i i H)y=(M"*=1+M " *H-V? , Y==D.
wherem is the slope of the liquidus line in the phase dia- (VH)y=(M LEMTH=VIH)HY, Y D @)
gram,C* is the dimensional concentration. The scaled con-

centration in(1}—~(3) is related to the dimensional one by the Here the rescaled half-thickness of the Hele-Shaw cell is

formula defined asD=¢d. The second boundary condition follows
c*—c. /k immediately from(7) and can be written in the form
C: P
L(k—1)/k’
Carl ) eHy==*cot¢, Y=7FD. (9)

and the scaled curvature for a given interface shgpey,t)
is The long-wave equation is then derived by exactly the
same procedure as for infinite domaifi; the result is

(1+hZ)hyy—2hh hye +(1+h7)hy,
(1+h2+h2)%? ' Hr—MV2H1+MV*H+ §V2H + kH

=V.(HVH)-MV-(V?HVH), (10

K(h)=

Boundary conditior{2) represents the conservation of sol-
ute at the interface, Eq3) comes from the conditions of
constitutional undercoolinEq. (4)] and the Gibbs-Thomson Where =M —1—«M. Thus, the equation obtained here is
effect[1]. To complete the formulation the far-field and side- identical to that of Riley and Davis’]; the boundary condi-
wall boundary conditions are specified as follows: tions, however, are different. This system could now be

solved numerically, but first use is made of analytical meth-
C—1, z—ox, (5) ods.
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. ANALYTICAL RESULTS A similar approach can be used to calculate the higher-
A. Basic state and linear stability qrder terms. Let us now cop5|der its stability by studying the
time evolution of a small disturbance of the form

Let us assume that the contact anglés close tom/2,
H'=%u(X,Y,T), ZE<p<l,
a
p= 2 pe, e<p<l, wherez is the disturbance amplitude, independent of param-
etere. At neutral stability (i+=0) the functionu satisfies the

and use a perturbation expansion in powerp tif determine ~[ollowing system:

the x-independent basic-state interface, MV4u+ 6V2u+ ku=V-(HgVu+uVHz)
Hg=pH;+p?Hy+---. —MV-(V2uVHg+ V2HgVu),
The basic-state interface shape is the functiory ohly (15
and can be expressed in terms of the Fourier series as uy=0, Y==D, (16)
7n (VZu)y=(M"'u-V2u)(=£p), Y=%D, (17

Hg= >, H cosa,Y, =7
n=o where nowV =(dy,dy). Note that for planar frontg=0)

: - . the eigenfunctions are simply sines and cosines, and the
where the Fourier coefficients can also be expanded in POWharacteristic equation at the neutral stability condition re-

ers ofp: duces to
HS=pH{ + p2HY" +- -, M|al*— 8|al?+ k=0.

The coefficients of the series expansion of the leading-ordeereais thg wave vector of the disturbanfc&l. The critical
solution,H{" , are found from the two-dimensional version values ofla|“ and the scaled segregation coefficient are given

of the long-wave evolution equation, which can be written inPYy
Fourier space as KC:(M”z—l)Z/M, agz(Ml’z—l)/M. (18)

M(Hiyyyynt 8(Hiyy)n+«H"=0, n=1.2,.. .. If the thickness D is smaller thami\ = /a., one-half of
(1) the critical wavelengttx, then the critical disturbance is in-
dependent ofY; for larger values of the thickness three-

Here only the leading-order terms in powerspadre consid-  gimensional structures can develop from the planar interface.
ered. Integration by parts can be used to obtain the followingsoth cases are relevant experimentally.

expression for the Fourier component of the second deriva- £or small values of the contact-angle parameiethe

tive: shape of the interfacial disturbance can be written as the
following asymptotic expansion:

1 D
(HlYY)nEBJ;DH]_YYcosanY dY u:u0+pul+p2u2+..., (19)

—op-1(_1\n+1_ 224(n) where the leading-order termn, is the eigenfunction of the
2D H(—1) arHy", (12 - : .
stability problem for planar interface. Let us first assume that

) . .. the thickness is smaller than the resonant vaitia, such
where the contact-angle conditi¢®) has been used. A simi tpat both D and 4D —\ are O(1) quantiies. Then the

lar expression can be obtained for the Fourier componentq di der disturb b itten in the f
the fourth derivative by using the linearized version of the eading-order disturbance can be written in the form

boundary conditior{8) combined with Eq(9), UO:UBO)eiaerC_C_
(Hiyyyyn=2D"Y{—1)""} (M t-1-ad)+ajH{". and the above asymptotic expansion foin powers of the
(13 contact-angle parameter is uniformly valid. Here “c.c.” de-
notes complex conjugate. The stability for near-resonant val-
After substituting the expressio$2) and(13) into Eq.(11)  ues of thickness will be discussed later in this subsection.
the following formula is obtained for the leading-order Fou-  Let us write the Fourier expansion for the first-order so-

rier components of the basic state: lution in the form
M - n
HO=— o u1=e'aXn§=:O u™ coga,Y), =5
-+ a2 substitute this expansion into the systeéts)—(17), and col-
n

(14)  lect all terms atO(&p); this gives expressions for the Fou-

HY=2MD ¥ -1)"—%—7—, n=12,....
dap—Ma,—« rier coefficients at this order in the form:
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m_ (0 2Ma®D (1"~ (a+ a5+ 2Ma’ap) HY”
ui"=u
1 0 M (a*+ 2a2aﬁ+aﬁ)_5(a2+aﬁ)+'c

u®=0.

The perturbation problem has a unigue solution only
when the scaled segregation coefficien$ equal tox ; thus
no correction to the stability boundary is found at this order.

The asymptotic expansion af therefore takes the form:

K=Kt p2K2+---

PRE 61

There is no first-order correction to the wave number as well.
At the second order ip it is sufficient to integrate the equa-
tion for u, to see that a solvability condition must be satis-
fied in order for solution to exist. This leads to an expression
for k5 in the form

efiax
“2T2DuP(1+Ma

D
?) f_Dulxx(Hl_ MHiyy)dY.

This can be expressed in terms of the known Fourier coeffi-
cients

a[2Ma’D }(—1)"*1—(a’+a2+2Mafa2)H{M|[2MD " (—1)"*1- (1+Man)H<“>]

o
K= E
=1

The correction to the critical value &f is plotted as a func-

2[M(a*+2(aay)?+al) — 8(a?+a2)+ k] (1+Ma?)

dropped; the wave number is fixed and is equal to the critical

tion of the morphological number in Fig. 2, together with value appropriate to the boundary condition.

corresponding results for the infinite dom&ifi. Clearly the

Both the numerical solution and the structure of analytical

effect is destabilizing for all values of the morphological expressions below suggest that the Fourier coefficients rap-
number. This is consistent with the experimental observaidly decay asn is increased, so it is usually sufficient to

tions[2] and other solidification mode(g},5].

consider a two-mode truncation of the series.

Let us now turn to the resonant case. First assume that The solvability condition is now obtained in the form

thickness D is exactly equal tar/a. and study the stability

of the interface with respect to the antisymmetric distur-
bances. Those giv®(p) corrections to the stability crite-
rion, while symmetric ones only contribute at the second
order, as discussed above. A Fourier expansion for an arbj]=

trary odd function ofY can be written as

o

u=> viVsin(a,Y), a,=
A1

The functionu still satisfies the same general stability prob-

lem (15)—(17). In the calculation below the subscript™is

045 -

0.35

025 -

0.15

0.05 : ! !
2.0 4.0 6.0 8.0 10.0

M

n/2D. (20)

2

a
u)—N[M(HBYUY)l_(HBU)l]- (21)

\Y

K— K=

he leading-order terms here are first ordep;iif all higher-
order contributions are neglected, the values of the correction
can be written in the form

2
— 2P MaH D+ HO - S,

WM

Let us now substitute herein the expression for the Fourier
coefficients of the basic state and simplify the resulting for-
mula by using the characteristic equation for stability of the
planar interface. The result is

K— K=

K—K (2+Ma2—M?2a%). (22)

" 9D\/—

This correction is plotted in Fig. 3 as a function of the
control parameteM for p=0.2, where a relatively large
value ofp is considered for the purpose of clarity. The effect
is more significant since it is linear ip. Note that positive
values of p correspond to the more physically common
concave-down interface. If the interface is concave down, the
perturbation theory predicts that the effect is destabilizing
over a wide range dfl. The stabilizing influence for largé
may only be suggestive since in the derivation of the equa-

FIG. 2. Neutral stability curve for a nonplanar solidification tion, M is order one. We note that the conclusion about the

front obtained from the leading-order perturbation the@sshed
line) for p=0.3. The value of thickness B=\/8. Solid lines rep-

destabilizing effect is consistent with a previous result for a
different model of solidificatio5]. In experiments for near-

resent stability boundaries for the same equation on the infinitéesonant conditions the effect is also found to be destabiliz-

domain.

ing for concave-down interfacgg].
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0.55 - ‘ - ‘ At the second order i& one obtains the following problem
[here it is assumed th&d(&2) is not coupled to any terms
that depend om]:

0.45 -

1
LHop=5 VZHE =MV - (V2H,VHoy). (29)
0.35

Further calculation can be simplified if one uses the follow-

025 L ing easily verified identity:

V2H01: - a2H01.
018 1 In particular, it allows us to simplify the right-hand side of
Eq. (24) so that theD(s2) problem becomes

0.05 : : . : 2
20 4.0 6.0 y 8.0 10.0 12.0 £H02=1+: M VZH(ZH.

FIG. 3. Neutral stability curves fop=0.2, resonant case
(dashed ling The value of thickness i®=\/4. Solid lines repre- No solvability condition arises at this order; the solution is
sent stability boundaries for the equation on the infinite domain. found by applying the inverse operatfr * to the right-hand

side of the last equation and substituting the expres&an

It is important to note that a significant correction to thefor H; in terms of the amplitude& andB into its right-hand
stability criterion is obtained not only at one special value ofside, which yields
thickness, but in a neighborhood of such values. This can be

understood from the physical mechanism, which implies Hoo= — £(§A%e?3X 4 LB2g2iaY _ pgdaXFiaY
resonant-type interaction between the symmetric Fourier . axX_iay
mode of steady state and the leading mode of instability; —AB"e +c.c),

clearly they occur not only for the critical wavelength. More-
over, higher-order resonances can occur for larger values
thickness, when several leading-order wavelengths can f
into the gap. It is clear that such effects can significantly £y — ;H .+ V2(HoHoy) — MV - (UgVH ot UV Hoy)-
influence pattern formation in the system. This is discussed

) . ; T (25
in the next subsection. For computational simplicity it is as-
sumed that the condition of exact resonance holds; results atéere and in all subsequent calculations the functidysare
qualitatively the same for the near-resonant condition. Alsalefined for all integer values df and j according toU;;
note that patterns for a small nonresonant value of thickness V?Hj; . ‘ _

are not discussed in this section; this case, as well as many There are secular terms of the typ@* ande'®" on the
numerical results for the resonant case, are described imght-hand side of Eq25); the solvability condition requires
Sec. IV. that

hereé=2M 1(a®M+1)/a%. At the order ofs® one ob-
ins the following problem:

Ar=uA— ag|AJ?A— Bo|BI?A,

B. Weakly nonlinear analysis TH ol Al FolB
Let us reintroduce the small paramefewhich measures Br=uB— ao|B|’B— Bo|A|I’B,
the amplitude of small perturbations and write the

asymptotic expansion in the form where the constanta, and B, are given by the following

expressions:

H=2 > H;p'Eh _22yM-3) 4(M-2)
=0 =0 @="gy BTy (26)
Near the neutral stability curvdor values of the scaled seg- The region of subcritical bifurcation corresponds to negative

regation coefficient given by(g)=«x— u%?) the nonlinear values of ay, and the transition pointcdy,=0) is at M
evolution of the disturbances occurs on a slow time s®ale =9/4. There are two types of steady-state solutions: two-
=%t [7]. Then, the first-order solution can be written in the dimensional cells(either A=0 or B=0) and square-type

form pattern, for which the two amplitudes are equal=(B).
Two-dimensional cells are stable if
Hoi=A€®*+Be?+c.c. (23 8
1- 2°<o.

Here c.c. denotes complex conjugate. Let us introduce the %o

linear operator Nonsecular terms on the right-hand side of E2p) also
contribute to theD(z3) solution, which can be written in the
L=MV*+ 6V2+ k. form



1280 V. S. AJAEV AND S. H. DAVIS PRE 61

Hoz= HB3e3iaY+H1AeiaX(BZe2iaY+ B* Ze—2iaY)+C.C_ Slzf(%H|B|ZB* —2|A|ZB*H1)+%H(HE1)BS
+ (27) +HP'B*3) +2|AlB*K+B* Ky,
— ¢a¥(1+2Ma?) » ¢a’(40—55Ma%) 4¢. (1) 2, B2
= = — *
8IMa’—9sa’+tr," ' 9(25Ma’—58a’+ k)’ Ro=| g Mt 27Hg + K (B4 BOA,
(28)

. . . S, =&(2A41A12B* + LAB*2B) + H(6HWY B3 — 24H @) g* 3
Here we give explicit expressions only for those terms which 2 E(2H|A 8 )+ H(6Hg B
contribute to the.contact-angle cqrrection_s calcglated below. —9HWPB*3+18HP'B%) — 2K ,B* + 2| A|?B* K.

Let us now discuss changes in the bifurcation structure
due to the contact-angle effedfsonzero values op). The In order to eliminate these secular terms a solvability condi-

O(gp) problem is formulated as follows: tion has to be satisfied, which is written in the form

LH11=V?(HoiH10) =MV - (UgVH 19+ U1oVH). a?
11=V*(HoiH10) (Uo1VH 10t U1gVHo) Ar= A~ argAl2A— Bo|B|2A— \/_Mp(Rl_ Ma2R,),

The solvability condition at this order gives corrections to

the stability criterion, as discussed in Sec. IlIB. There are a2p

also nonsecular terms on the right-hand side; corresponding B — ;;B— a,|B|2B— ,|A|?B— — (S;— MaZ3S,).

terms in the solution are found by using the inverse of the M

linear operatorl and known expressions fdtq and Hy;, . - _ )

The result can be written as follows: These conditions can also be interpreted in terms of cor-

rections to the coefficienta, and B, [9]. This approach

Hy=FBe¥ Y+ [, e?aY(AeX+ A*e @) 4o c. yields a modified system of amplitude equations in the form:

Ar=uA— ag|A|2A— BB2?A,
aZH(Bl)(5+ 6M a2) T 0| |

- 2(25Ma*+58a%+ k)’

9(HE'—2H'Ma?)

H= SiMatr9sa? 1« - Br=uB—aB3— By|A|?B,

F']_:

At the second order i the contact-angle corrections are Where
found from the following system:

a=aptpagt- -, B=LotpLrt---.
—yv2
LH15=V(HoiH 11+ HioHoo) The no-flux boundary condition requires the amplitigléo
—MV-(UpVHq+ Uy VHg, be purely imaginary. For planar front 'steady-state. ce'IIuIar
structures can be observed near the bifurcation point in the
+U1oVHgo+ UgVH ). region of parameters where the initial bifurcation is super-

critical. Both the amplitude of such cells and the location of
Solvability condition at this order is satisfied automatically the transition point between the regions of supercritical and
[9]; solution terms required at the next order are given by subcritical bifurcations will change due to the contact angle.
_ _ _ _ For positive p the region of subcritical bifurcation is ex-
Hy,=K,e??Y+ (AB* e+ A*B* e 1@X)Ke? +c.c., panded, as shown in Fig. 4. The changes in the bifurcation
(29 structure are illustrated in Fig. 5—they are similar to those
found in[5]. Stable two-dimensional structures wiBw 0

where correspond to interfaces which are symmetric with respect to
5 the center plane.
2 16Ma ~ For the values of control paramete(g) =« — ug? the
- _ (2p*2| = 2 ME
Ky 9a’M ¢Hg'B 9+ 3 +8Al Hlm}’ interface may be unstable with respect to modulations—

disturbances of the larger scale=z2X. In an infinite three-
HP2YM-1) - A (VM +1) dimensional system there is an annular ring of the unstable
= M . wave numbers for this modulational instabilifyt3], the
a thickness of the ring i©(?), see Fig. 6. For the Hele-Shaw
cell the system is essentially two dimensional for small
enough values of thickness when no wave numbers with a

At the O(pz?) the right-hand side contains secular terms

of the form nonzeroy-component are allowed. If the thickness is now
A , increased to the point when there is only one admissible
_ A2 _ 2 iaX_ ;2 _ 2 iaY i i g .
a“(Ri—Ma'Ry)e a’(Si—MatSe +c.c, value of this componentdashed line in Fig. 6 then the
weakly nonlinear analysis will lead to the following system
where of amplitude equations:

9°A
Ar=puA— aolAIPA- BBA+ y
IX?

H
Rlz(%JrHnglbr K |[(B*)2+B?]A,
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0.40 -

020 -

1.0 310 5i0 710
M

FIG. 4. Location of the transition point on the neutral stability = FIG. 6. Unstable wave numbers for modulations in three dimen-
curve for the resonant case. Solid and dotted lines denote the reions(inside the annular ring Only two values of theg component
gions of supercritical and subcritical bifurcations, respectively, forare allowed for the Hele-Shaw case.
the two-dimensional cas@&0). Forp=0.1 the supercritical bi-
furcation correspon(_:is to the dashed line, the subcritical bifurcation IV. NUMERICAL SOLUTION
to the dash-dotted line.

In order to check the analytical results and study strongly
Br=uB—aB3— By|A|?B. nonlinear evolution of the solidification front the long-wave
evolution equation(10) is solved numerically with the
Notice that modulational terms are present Only forln boundary Condition$8) and (9) and periodic boundary con-
order to find the value of the coefficient we expand the ditions in theX direction. Spatial discretization is performed
linear operator in powers &f: using finite differences on a uniform mesh in thielirection
L=Ly+ELy+ -, and Fourier components in thedirection. The grid points at
the boundarie¥=—D andY=D require special treatment.
and then substitute this into all terms of the equation, includfor a fixed value o the functionH(X,Y) at the two grid
ing nonlinear ones. At the second order@nthere is no  points adjacent to each of the walls can be expressed as a
additional contribution due to the contact angle, but solvabil-Taylor series about the end points. The first and third deriva-
ity condition at the third order gives corrections to the valuetives are eliminated from such expressions by using the
of y [9]. boundary condition8) and(9). Then each Taylor expansion
Since the value ofy now depends on the contact angle, s truncated to the fourth order, which leads to a linear sys-
the modulational stability boundary is different. The resultstem of two equations for the unknown second and fourth
are shown in Fig. 7; the domain of modulational instability is derivatives at each end. After this system is solved, all de-
expanded. rivatives in the fourth-order Taylor expansions about the end
points are known: we use these expansions to extrapolate the

0.34 T T

08

0.6

FIG. 5. Bifurcation diagram for nonzero values pffor the 2%%.10 0.30 0.50 0.70 0.90

resonant case. Absolute values of the amplitudes in both directions a

are plotted versus the control parameter. Dotted lines denote un- FIG. 7. Corrections to the modulational stability boundary. The
stable branches. The primary bifurcation is centerline symmetricsolid line represents the linear stability curve, the dashed line rep-
the secondary is centerline antisymmetric, and the secondary bifuresents the Eckhaus curve, and the dash-dotted line is the modula-
cation point approaches the primary @s0. tional stability boundary fop=0.03.
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0.006 | /
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0.000 y L
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FIG. 9. Linear stability criterion for symmetric interface shapes
at M=4. Correction to the scaled segregation coefficidnt= «
— k¢, is plotted as a function op for D~0.5\. The solid line
represents the two-mode Galerkin approximation, the dashed line
represents the first-order perturbation solution, and the circles rep-
resent the numerical results.

perturbed problem. The stability boundary can be found nu-
merically and then compared to linear theory. For small
values ofp<<0.01 the leading-order perturbation theory re-
sult (22) is in very good agreement with the numerics; for
larger values op it becomes inaccurate despite the fact that
basic state is still well represented by the perturbation ap-
proximation. The error in linear stability is due to inaccurate
representation of the eigenfunctianif one uses a two-mode
truncation in the Fourier expansion of the agreement be-

. . . comes much better. This can be seen in Fig. 9: the solid line
FIG. 8. Steady-state interface shapes obtained numerically fo 9

M=4.04=0.25D=0.2x (solid lines. Dashed lines represent per- Ir_epreser.lts_formuléizl), the dashed line leading-order correc-

) tion (22); circles correspond to the numerical result.
turbation theory results. The values of the contact-angle parameter . -

_ _ In order to verify the validity of the long-wave approach
arep=0.2(a) andp=0.5 (b). L . .

the derivative with respect tpwas calculated for all numeri-

_ o ) ) o cal solutions; it is consistent with the scaling we used, i.e., all

spatial derivatives can be evaluated by standard centrajmportant to note that the angle between the interface and the

difference formulas. Time-stepping is performed by Gear'sya|| in the cross sectiosiis different from the actual contact
method_(backwal’d dlffel’entlatlon formu|3lEUSIng Standard ang|e' A Simp'e geometric Construction a”OWS one to f|nd
subroutines from th&MSL software package. the relation between those in the form

At sufficiently small values of thickness and length in the
tang=tan¢/ 1+ H%.

X direction, for which the curved-front solution should be
stable according to the analytical formulas from the preced-
ing section, the numerical solution quickly approaches Let us now discuss the fully three-dimensional evolution.
steady state. This one-dimensional numerical interface shagérst, consider a small value of thicknedd €£\/8), when
was compared to the perturbation solution given by #4).  steady-state structures in the weakly nonlinear regime are
The numerical steady-state solutions are shown in Fig. 8 toalmost two dimensional for smail In the strongly nonlinear
gether with the perturbation theory resulttashed lines  regime two-dimensional cellular structures with deep roots
Clearly they are in a very good agreement even for relativelyare known to appear in the numerical solutiph8,11]; these
large values ofp: interface shapes are almost identical for simulations are often used to model similar structures in ex-
p<0.1 and only small error can be seen for larger values operiments. Experimental results, however, depend on thick-
the parametefsuch asgp=0.5, Fig. &b)]. ness[12], while previous numerical simulations did not take
Let us now increase the value of thickness to the poininto account three-dimensional effects. It was found from our
where asymmetric disturbances can grow. Consider the rangaimerical solution that stable three-dimensional structures
of parameters where bifurcation in the unperturbed system isxist for a range of values of contact angles and depend on
supercritical. For relatively small values qf the front thickness, typical results are shown in Fig(d0 The solu-
quickly approaches the symmetric state, then after some timons are flattened at the top and thus similar to experimen-
the instability develops which leads to asymmetric steadytally observed shallow cells. The interface shapes depend on
state structure similar to finite-amplitude solution of the un-the contact angle, as is illustrated in Fig.(1Q where cross
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Y FIG. 11. Interface shapes in the weakly nonlinear regime for a
(a) larger value of thicknes€) =\/4. The interface is no longer sym-
metric with respect to the center plane.

V. CONCLUSIONS

Three-dimensional effects are considered in directional
solidification in Hele-Shaw cells in the limit when the gap
width is much larger than the solute diffusion length. The
system is described by a long-wave evolution equation sub-
ject to appropriate boundary conditions. When the contact
angle satisfied¢p— w/2|cp<1, asymptotic expansions are
used to describe the behavior of the interface. At arbitrary
values of contact angles the system is solved numerically by
a finite difference method.

It is found that for sufficiently small values of the gap
thickness the interface always remains symmetric with re-

20 s - spect to the center line; for small valuespthe asymptotic
00 50 X 00 theory indicates that such a curved front is less stable than
(b) planar basic-state solution, the corrections are second order

in p and therefore usually small. In the strongly nonlinear
. i ) . . regime numerical solutions indicate the appearance of
nondimensional thicknes® =1/8. () Three-dimensional steady- o4y state cellular structures that satisfy the boundary con-
state interface shapes in the strongly nonlinear regimexfor, ditions at the walls. Formation of rootlike structures is pro-
=0.03. (b) Cross sections of the front for different values of the ! ’ . L. P
contact angle. The solid line corresponds to the two-dimensionarlnOted for Concave-dowr_] Interfa<_:e$ pus Increased.
problem, the dashed line to the steady-state solution prtl®.01. As the value of the thlckness IS |nlcfreased to approach the
one-half of the wavelength of instability, resonant-type non-
sections of the interface shapes are shown for the vaglues linear interactions between the most unstable disturbance and
=0 and 0.01. Characteristic amplitude of the solution isthe symmetric basic-state solution determine the behavior of
larger due to the presence of three-dimensional effects. Thuthe interface. They lead to destabilization of the concave-
we expect that contact-line effects for concave-down interdown interface; this effect is linear ip. Weakly nonlinear
faces promote formation of the rootlike structures. Sinceanalysis shows that appearance of three-dimensional struc-
deep cells typically have smaller spacing, a decrease in spagires can be delayed; this is also confirmed by numerics. The
ing can be expected due to three-dimensional effects; thigegion of instability due to modulations expands due to the
may expain the fact that experimentally observed spacing ipresence of contact-angle effects. Numerical results suggest
cellular structures at low speeds is typically smaller tharthat for largep interfaces symmetric irY tend to be more
predicited by two-dimensional mode[42]. Careful mea- stable than predicted by perturbation theory. In the strongly
surement of the amplitudes of cells is needed to verify thiswonlinear regime fully three-dimensional steady-state solu-
hypothesis. In the region of subcritical bifurcation it was tions are found; the secondary bifurcation to stable solutions
found that the secondary bifurcation to stable solutions cafs postponed.
be promoted due to contact-angle effects.
Larger values of thicknesses were also considered, where ACKNOWLEDGMENTS
resonant effects are more important. In the weakly nonlinear
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FIG. 10. Results of numerical simulations for a small value of
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